
CONDENSATION: A THEORY OF CONCEPTS

SAM EISENSTAT

Abstract. We understand agents as creating concepts in order to organize

their understanding of the world, and as often sharing concepts and so being

able to work out how to make sense of the world together, forming language

communities. Here, we look at how probability distributions can be organized

by introducing appropriate latent variables, which we aim to use as a model

of these phenomena. Our main result shows that under certain information-

theoretic hypotheses, di�erent systems of latent variables stand in a kind of

correspondence.
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1. Introduction

�Enti�cation begins at arm's length; the points of condensation in the
primordial conceptual scheme are things glimpsed, not glimpses.�

W. V. Quine [Qui60]

We are concerned here with understanding, as may be possessed by an agent,
shared in a language community, or presented in a scienti�c theory. In particu-
lar, we will examine a mathematical model intended to show some aspects of this
phenomenon which we otherwise might see less clearly.

Our motivating idea of meaning goes as follows. We possess and create bodies
of meaning. We may regard the traditional logical elements�propositions, entities,
relations�as among their conceptual constituents. We introduce such concepts�
say, entities like trees, numbers, or people�and they help us organize the world.
We do not always introduce new elements by de�nition. For example, one cannot
de�ne physical objects in terms of one's visual perceptions, though one can make
inferences from perception.
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Instead, the physical objects have a reality that surpasses their connection to
one's visual perception. We expect the objects to also be perceived by other senses,
and by other people. If one changes somewhat one's understanding of the con-
nection between objects and perception, we expect that roughly the same objects
will still be comprehended, that there will be a correspondence for the most part
between old and new. Even without a source in shared culture, as with babies or
upon making new contact with people with a di�erent way of life, we expect to
have enough meaning in common to be able to get started in working out a greater
shared understanding over time.

Here, we will try to say these things in the language of probability theory, to the
extent possible. Something postulated that goes beyond one's observations can be
understood as a parameter of a statistical models, or a latent variable. (Re�ecting a
Bayesian view, we won't try to distinguish these.) But we want to be more precise
about the role of latent variables here. One motive behind introducing a latent
variable is as a �mere postulate��as we conceive it, its only role is to predict the
observable variables more accurately. However, we can point out other reasons,
following the above discussion. We might like latent variables to be intersubjective,
in that other agents represent the world in terms of similar variables. We also might
like latent variables to be more deeply integrated into a body of meaning, and thus
to be things that we can look at many ways, as it suits us, rather than acting like
�black boxes�, which we only use to predict something else. To these reasons we can
add another. We may have certain concepts which one has reason to use even if
one only wants to predict, but which we want to also use to understand our values,
such as concepts dealing with the experience of others.

With this motivation, we give conditions under which certain latent variables
of di�erent probabilistic models will admit a kind of correspondence. We can take
this to give some indication of how and why di�erent agents might be expected to
use corresponding concepts to understand the world, even before they have been
inducted into a shared language community. This is carried out in Sections 4 and
5. Section 4 uses rather restricted hypotheses, in order to illustrate the idea, in
Theorem 4.15, and Section 5 generalizes the idea using quantitative hypotheses
with more interesting examples in Theorem 5.8, which demonstrates a kind of
approximate correspondence.

We can related these ideas to others in statistical theory. Many traditional para-
metric models introduce variables whose meaningfulness is created by human un-
derstanding of the subject matter. In other contexts, such as latent causal discovery
with structural causal models [SGS01; PJS17], hidden Markov models, independent
component analysis, factor analysis[Bis06; Mac02], sparse autoencoders[Cun+23],
and factored space models[Gar+24], we introduce particular latent variables as part
of a statistical method, and we often hope that these variables will make sense to
us, and will �t into our bodies of meaning. We aim for the theory introduced here
to be able to clarify how these ideas work, and what we are asking for when we
ask that they discover meaningful variables. We do not, though, initiate such an
analysis here.

The particular form of latent variable models introduced here most parallels
structural causal models and factored space models. One point of contrast is that
these theories are organized around determination and conditional independence,
whereas here we will express things using inequalities, in terms of entropy and
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mutual information. We should note that information-theoretic methods are widely
used in work on structural causal models though.

The aim towards intersubjectivity here can be seen in the context of the work of
de Finetti [Fin29] on exchangability and Wentworth and Lorell [WL24] on natural
latents. The principal di�erence in approach is that we seek here to work with
many latent variables, which together form a kind of system of meaning�a model
of the world structured in terms of a set of diverse conceptual parts.

2. Background and notation

First, we review some basic points about probability theory in order to establish
some conventions for our discussion.

De�nition 2.1. A random variable is a measurable function X : Ω → R between
measurable spaces. We will say that X is a random variable on Ω and valued in R,
or with range R.

However, we will consider many measurable functions here, but we will only call
some of them random variables. When we call a measurable function a random
variable, we indicate that we intend to use the following forms of expression. First,
and most importantly, we may talk about a random variable valued in R as if it is
an element of R. For example, if X is a random variable valued in R and f : R → S
is a measurable function, we write f (X) to mean f ◦X, and given a pair of random
variables X : Ω → R and Y : Ω → S, we write (X,Y ) for the random variable
Ω → R× S de�ned as

(2.1) ω 7→ (X (ω) , Y (ω)) .

We may treat random variables as elements of their ranges in other such ways
if we feel the meaning to be clear. This idea is the main reason for the random-
variable concept, but we will also establish some other conventions involving random
variables.

Second of all, if X is a random variable on Ω and π : Λ → Ω is a measurable
map, then we call the random variable X ◦ π, which is de�ned on Λ and has the
same range as X, the pullback of X by π, and we denote it symbolically as π∗X.
However, when we feel that the meaning is clear, we will just write the pullback as
X. We can get away with this because probabilistic concepts are preserved here.
For example, if Ω and Λ have the structure of probability spaces, π : Λ → Ω is
measure preserving, and X and Y are random variables on Ω, then the mutual
information of X and Y satis�es

(2.2) I (X;Y ) = I (π∗X;π∗Y ) .

Following a similar idea, we can write expressions like I (X;Y | Z), where Z is a
random variable on Λ. This can only mean I (π∗X;π∗Y | Z), since the pullback
lets us make sense of X and Y as random variables on Λ, but we don't have a
convention for making sense of Z as a random variable on Ω.

Third, if X is a random variable, we may use the notation RX to denote the
codomain of X. Fourth, if X : Ω → R is a random variable and the domain Ω is
given the structure of a probability space (i.e. it is equipped with a probability
measure P), then we call the probability measure X∗P is the distribution of X.
Fifth, again given a random variable X : Ω → R on a probability space (Ω,P), if
the range R is given the structure of a subset of a vector space V , then we call the
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integral of X with respect to P the expectation of X. Fifth, if X and Y are random
variables, we may say that Y is a function of X, with the meaning that there is
a measurable function f : RX → RY such that Y = f (X). Analogously, we may
say that Y is a function of X almost everywhere.

Next, we'll �x some notations.

De�nition 2.2. The expression P+S will denote the nonempty power set of a set
S, that is, the set of all nonempty subsets of S.

De�nition 2.3. We use the standard notations H (X) and H (X | Y ) for the en-
tropy of a random variable X and the conditional entropy of a random variable
X given a random variable Y . We also use I (X;Y | Z) to denote the mutual in-

formation of random variables X and Y given a random variable Z. Sometimes
we write multiple random variables in such an expression using commas, such as
in H (X,Y ); this means the entropy of the product random variable (X,Y )�this
quantity is known as the joint entropy of X and Y . Other such expressions have
corresponding meanings.

We will also have need for the interaction information,

(2.3) I (X;Y ;Z) = I (X;Y )− I (X;Y | Z) .

Note that this quantity is invariant under permutation of its arguments.

While many of our arguments readily generalize to more continuous settings,
where Halmos [Hal59] de�nes information-theoretic quantities in a more general
sense, we will generally assume here for simplicity that our probability spaces are
countable and discrete, and have �nite entropy.

It will simplify a few things to equip the space of probability measures on a
measurable space with the structure of a measurable space. This idea has been
carried much further, especially by Giry [Gir82] and Fritz [Fri20].

De�nition 2.4. The space of probability measures on a measurable space Ω can
itself be equipped with the structure of a measurable space, using the smallest
σ-algebra such that for each measurable set E ⊆ Ω, the map

(2.4) P 7→ P (E)

is measurable. This space will be denoted G (Ω).

Proposition 2.5. Let X and Y be random variables with �nite entropy and count-

able discrete range on a countable discrete probability space (Ω,P), and suppose

that H (Y | X) = 0. Then, then there is a measurable function f : RX → RY such

that Y = f (X) almost everywhere.

Proof. Let A ⊆ RX be the set of those x such that the singleton {x} has positive
measure under the pushforward X∗P. Since RX is countable, A has full mea-
sure. Everywhere on the preimage X−1A, we can de�ne the conditional probability
distribution P (· | X = x). From the de�nition of conditional entropy, each such
probability distribution is a Dirac measure in G (Ω) for almost every x ∈ RX. This

gives us a function f̃ : A → RY such that

(2.5) Y = f̃ (X)

almost everywhere. SinceRX is discrete, we can extend this to a function f : RX →
RY , which is automatically measurable. □
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3. Set-up

In this section, we will introduce the central concepts of latent variable models
and latent string models. We intend for latent variable models to organize the
structure of random variable models by positing additional latent variables, which
cannot necessarily be de�ned from the given random variables. However, our de�-
nition of latent variable models will be rather weak. We ask that the given variables
can be recovered from the latent variable, but we don't ask that this serve any or-
ganizing role, we don't ask that we attain an enlightening perspective on the given
variables. So, we supplement this using various scoring functions. A latent variable
model that gets a good score may more likely help us understand the underlying
random variable model.

Now, we can proceed with our objects of study.

De�nition 3.1. A random variable model is a countable discrete probability space
Ω with �nite entropy, together with a �nite family of random variables Xi : Ω → Ri,
each of which has countable and discrete range.

Our aim here is to understand random variable models by means of auxiliary
random variables, which we'll call latent variables. In particular, in a random
variable model

(
Ω, (Xi)i∈I

)
, we want the random variables Xi to be functions

of certain latent variables. We won't necessarily de�ne these latent variables on
Ω; instead we might need an extension of the probability space. This leads to a
de�nition.

De�nition 3.2. A latent variable model for a random variable model
(
Ω, (Xi)i∈I

)
is an ordered pair consisting of a random variable model

(
Λ, (YA)A∈P+I

)
with

its random variables indexed by the power set of I, together with a probability-
preserving map π : Λ → Ω such that for each random variable Xi the pullback π∗Xi

is almost everywhere a function of the random variables YA such that A ⊆ I and
A ∋ i. In other words, π∗Xi is almost everywhere equal to fi (YA : A ⊆ I, A ∋ i) for
some measurable function fi from the product of the ranges of the random variables
(YA)A⊆I,A∋i to the range of Xi. We call the variables (YA)A∈P+I latent variables,
and if i ∈ A, we say that index A contributes to i.

We can compare di�erent latent variable models using scoring functions. Lower
scores should be �better�; we'll see how later.

De�nition 3.3. LetM be a random variable model, with random variables (Xi)i∈I ,
and L an associated latent variable model with latent variables (YA)A∈P+I . The
simple score of L at A ⊆ I is

(3.1) σL (A) =
∑

B∈P+I
B∩A̸=∅

H (YB) ,

and correspondingly, the conditioned score of L at A is

(3.2) χL (A) =
∑

B∩A̸=∅

H
(
YB | (YC)C⊋B

)
.

Finally, the reconstruction score of L at A is

(3.3) ϱL (A) = H
(
(YB)B⊇A | (Xi)i∈A

)
.
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All these quantities are �nite, since all the random variables of the form Xi

and YA have �nite entropy. These scores are in some sense local, measuring the
complexity of the latent model as it pertains to the product of the random variables
(Xi)i∈A. To score the latent model L as a whole, we could perform an aggregation
of these scores. For example, for a latent model L with latent variables (YA)A∈P+I ,

σλ
L =

∑
A∈P+I

λAσL (A)(3.4)

=
∑

A∈P+I

∑
B∩A̸=∅

λAH (YB)

=
∑
B⊆I

 ∑
A∩B ̸=∅

λA

H (YB)

and the analogous statements holds for the conditioned score as well. We will not
pursue that route further here.

In order to work with the latent variable models, we de�ne some notation for
random variables.

De�nition 3.4. Let M be a random variable model with variables (Xi)i∈I and
L an associated latent variable model with variables (YA)A∈P+I . We will write X
and Y with certain subscripts other than elements, respectively, of I and P+I to
denote certain products of the random variables in these families. If A ⊆ I, we
write XA to denote the joint random variable at A, which is the product random
variable (Xi)i∈A. Similarly, for any F ⊆ P+I, we write YF to denote the joint
random variable (YA)A∈F . We also de�ne the following notations:

Y∩A =
(
YB : B ∈ P+I,B ∩A ̸= ∅

)
(3.5)

Y⊇A =
(
YB : B ∈ P+I, A ⊆ B

)
(3.6)

Y⊋A =
(
YB : B ∈ P+I, A ⊊ B

)
(3.7)

Y∋i =
(
YB : B ∈ P+I, i ∈ B

)
.(3.8)

In particular, note that for any i ∈ I,

(3.9) Y∋i = Y∩{i} = Y⊇{i}.

In words, we call the random variables Y∩A and Y∋i the latents that contribute to
A or i, respectively.

3.1. Morphisms. We will also de�ne morphisms of random variable models. We'll
give a bit of the idea �rst. A probability-preserving map of probability spaces
π : Ω → Λ forgets distinctions. We can think of Ω as an extension of Λ. In other
words, we can say that Ω has all the measurable sets π−1E corresponding to mea-
surable sets E in Λ, but it can also have other measurable sets. So, a morphism
of random variable models will be similar, but we also account for the random
variables named by our index set. In particular, we correspondingly let the ran-
dom variables of the source model make more distinctions than those of the target
model. Now, we'll say all this more precisely.

De�nition 3.5. A morphism of random variable models has the form

(3.10)
(
π, ι, (fj)j∈J

)
:
(
Ω, (Xi)i∈I

)
→
(
Λ, (Yj)j∈J

)
,
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where π : Ω → Λ is a probability-preserving map, ι is a function J → I, and fj is a
function from the range of Xι(j) to the range of Yj . We require, for all j ∈ J , that

Yj = fj
(
Xι(j)

)
almost everywhere on Ω. Note that the function fj is automatically

measurable, since these random variables have countable and discrete range, and
from the same premises that the condition Yj = fj

(
Xι(j)

)
de�nes a measurable set.

Making the pullback explicit, we can write this as π∗Yj = fj
(
Xι(j)

)
. Also, note

that this is equivalent to the condition that on a set of full measure in Ω, we have
Yj = fj

(
Xι(j)

)
for all j ∈ J .

(We may observe that the map π in a latent variable model ((Λ, Y ) , π) is not
necessarily a morphism of random variable models here, since each random variable
Xi may depend nontrivially on multiple latent variables.)

De�nition 3.6. Given two morphisms(
π, ι, (fj)j∈J

)
:
(
Ω, (Xi)i∈I

)
→
(
Λ, (Yj)j∈J

)
(3.11) (

ρ, ν, (gk)k∈K

)
:
(
Λ, (Yj)j∈J

)
→
(
Π, (Zk)k∈K

)
,(3.12)

their composite is the morphism

(3.13)
(
ρ ◦ π, ι ◦ ν,

(
gk ◦ fν(k)

)
k∈K

)
:
(
Ω, (Xi)i∈I

)
→
(
Π, (Zk)k∈K

)
.

We can con�rm that this is well-de�ned, checking in particular that Zk = gk ◦
fν(k)

(
Xι◦ν(k)

)
for all k ∈ K almost everywhere. We know that, for all k ∈ K,

(3.14) ρ∗Zk = gk
(
Yν(k)

)
almost everywhere, so since π is probability-preserving, we have almost everywhere
that

(ρ ◦ π)∗ Zk = π∗ρ∗Zk = π∗gk
(
Yν(k)

)
= gk

(
π∗Yν(k)

)
(3.15)

= gk ◦ fν(k)
(
Xι◦ν(k)

)
.

as desired.

Proposition 3.7. Random variable models and morphism form a category.

Proof. On a random variable model
(
Ω, (Xi)i∈I

)
, we have the morphism

(3.16)
(
idΩ, idI , (idRXi

)i∈I

)
,

which we can see serves as an identity morphism. Further, we can see that compo-
sition is associative by checking associativity for any three morphisms
(3.17)(
Ω1, (Wi)i∈I

) (
Ω2, (Xj)j∈J

) (
Ω3, (Yk)k∈K

) (
Ω4, (Zℓ)ℓ∈L

)
.

(π,ι,(fj)j∈J) (ρ,ν,(gk)k∈K) (σ,o,(hℓ)ℓ∈L)

The composite of the �rst two morphisms is

(3.18)
(
ρ ◦ π, ι ◦ ν,

(
gk ◦ fν(k)

)
k∈K

)
and that of the last two is

(3.19)
(
σ ◦ ρ, ν ◦ o,

(
hℓ ◦ go(ℓ)

)
ℓ∈L

)
,
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so the triple composite, interpreted in either order, is

(3.20)
(
σ ◦ ρ ◦ π, ι ◦ ν ◦ o,

(
hℓ ◦ go(ℓ) ◦ fν(o(ℓ))

)
ℓ∈L

)
.

□

Because of the phenomenon of equality almost everywhere, there are a few dif-
ferent notions of equivalence that we may use in discussing this category.

Proposition 3.8. A morphism of random variable models

(3.21)
(
π, ι, (fj)j∈J

)
:
(
Ω, (Xi)i∈I

)
→
(
Λ, (Yj)j∈J

)
is an isomorphism if and only if π is an isomorphism of measurable spaces; ι is a
bijection; and for every j ∈ J , the map fj is an isomorphism of measurable spaces.

Proof. It is clear that isomorphisms have these properties. Conversely, if a mor-

phism
(
π, ι, (fj)j∈J

)
has these properties, consider the triple

(
π−1, ι−1,

(
f−1
ι−1(i)

)
i∈I

)
.

Since π is probability-preserving and is an isomorphism of measurable spaces, π−1

is also probability-preserving. For all i ∈ I, we have

(3.22) Yι−1(i) = fι−1(i) (Xi)

almost everywhere, so

(3.23) f−1
ι−1(i)

(
Yι−1(i)

)
= Xi,

almost everywhere, and we see that our triple is in fact a morphism. It is immediate

that it is an inverse to
(
π, ι, (fj)j∈J

)
, so that map is an isomorphism. □

De�nition 3.9. Morphisms
(
π, ι, (fj)j∈J

)
and

(
ρ, ν, (gj)j∈J

)
from (Ω, X) to (Λ, Y )

are equal almost everywhere if

(1) the maps π and ρ are equal almost everywhere as measurable functions,
and

(2) the functions ι and ν are equal.

Note that we put no further condition on f and g. It is possible that they are
unequal; by the de�nition of morphisms, we have for all j that

(3.24) fj
(
Xι(j)

)
= Yj = gj

(
Xν(j)

)
= gj

(
Xι(j)

)
almost everywhere (on Ω), but not necessarily everywhere. Even if fj

(
Xι(j)

)
=

gj
(
Xι(j)

)
everywhere, we may have fj ̸= gj since Xι(j), considered as a measurable

function, may not be surjective.

De�nition 3.10. Two random variable models M and N are equivalent if there
are morphisms

π =
(
π, ι, (fj)j∈J

)
: M → N(3.25)

ρ =
(
ρ, ν, (gi)i∈I

)
: N → M(3.26)

such that ρ ◦π and π ◦ρ are, respectively, equal almost everywhere to the identity
morphisms on M and N . In this case, we also say that the pair (π,ρ) is an
equivalence.
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We can say informally that an equivalence is an isomorphism almost everywhere.
To express this another way, suppose that

(
Ω, (Xi)i∈I

)
and

(
Λ, (Yi)i∈I

)
are random

variable models, π : Ω → Λ and ρ : Λ → Ω are probability-preserving maps, and
fi : RXi → RYi and gi : RYi → RXi are measurable maps for every i ∈ I.
We'd like to know when the obvious triples we can make from these are a pair of
morphisms constituting an equivalence. Laying out the de�nitions, we see that this
holds if and only if

(1) ρ ◦ π and π ◦ ρ are respectively equal almost everywhere to idΩ and idΛ,
and

(2) fi (Xi) = π∗Yi and gi (Yi) = ρ∗Xi almost everywhere for all i ∈ I.

We are taking a little more care by making the pullbacks explicit here, to avoid the
potential for ambiguity.

We can say a few things to establish that these notions behave as we expect. In
categorical language, the next proposition amounts to saying that random variable
models, morphisms of random variable models, and equality almost everywhere
together form a (strict) 2-category. We won't use the language of 2-categories
further here though.

Proposition 3.11. Equality almost everywhere of morphisms of random variable

models is a congruence with respect to composition. That is,

(1) equality almost everywhere of morphisms of random variable models is an

equivalence relation, and

(2) given random variable models L, M, and N , and morphisms

(3.27) π,ρ : L → M, σ, τ : M → N
such that π is equal almost everywhere to ρ, and σ is to τ , the composite

σ ◦ π is equal almost everywhere to τ ◦ ρ.

Proof. (1) is immediate. To con�rm (2), we will verify that the underlying measur-
able maps of the morphisms σ◦π and τ ◦ρ are equal. Let's use lightface symbols to
denote the underlying measurable maps of morphisms denoted with corresponding
boldface symbols. Then, π and ρ agree on a set E ⊆ Ω of full measure, and σ and
τ similarly agree on such a set F ⊆ Λ. The set E ∩ π−1 (F ) has full measure, and
for all ω in this set

(3.28) σ ◦ π (ω) = τ ◦ π (ω) = τ ◦ ρ (ω) ,
as desired. □

Since we have a 2-category, it follows that equivalence of random variable models
is also an equivalence relation. We'll spell this out a bit more.

Proposition 3.12. Equivalence of random variable models is an equivalence rela-

tion.

Proof. Re�exivity and symmetry are immediate. Suppose (π,ρ) is an equiva-
lence between L and M, and (σ, τ ) is an equivalence between M and N . Then,
(σ ◦ π,ρ ◦ τ ) is an equivalence between L and N , since

(3.29) (ρ ◦ τ ) ◦ (σ ◦ π) = ρ ◦ π = idL

and the opposite composite is similarly idN , so we see that equivalence is also
transitive. □
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4. Perfect condensation

In order to understand our scoring functions, we will ask some questions broadly
following two directions of inquiry. First, what is a �good� score? When is a score
good enough that we should be interested in a latent variable model that attains
that score? Second, what can we conclude about the structure of a latent variable
model that gets a good score? We will start with latent variable models rather than
latent string models, though the ideas of this section apply to both. Ultimately,
latent string models have more interesting applications, but latent variable mod-
els are more mathematically convenient. First, we note that we do indeed have
uninteresting latent variable models with bad scores.

Example 4.1. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model. Consider the

latent variable models L1 and L2 associated with M, de�ned as follows. First, L1

and L2 have the same underlying probability space as M, that is,

(4.1) L1 =
((
Ω, (YA)A∈P+I

)
, idΩ

)
L2 =

((
Ω, (ZA)A∈P+I

)
, idΩ

)
for some families Y and Z of random variables. We will set Y{i} = Xi for i ∈ I.

For A ∈ P+I with |A| ≠ 1, let YA be constant. Next, let ZI = XI , and let ZA be
constant for A ⊊ I. If all the following quantities are de�ned, we have

σL1
(A) =

∑
B∩A ̸=∅

H (YB) =
∑
i∈A

H (Xi)(4.2)

χL1 (A) =
∑

B∩A ̸=∅

H (YB | Y⊋B) =
∑
i∈A

H (Xi)(4.3)

σL2
(A) =

∑
B∩A ̸=∅

H (ZB) = H (ZI) = H (XI)(4.4)

χL2 (A) =
∑

B∩A ̸=∅

H (ZB | Z⊋B) = H (XI) .(4.5)

Since we didn't use anything about the structure of M to produce these latent
variable models, we expect that they don't tell us much about M, at least in the
typical case. So, these should usually be �bad� scores. If we want to produce even
worse scores, we could add more entropy to the latent variables in a way that is
irrelevant to determining the variables Xi.

Now, we can establish some easy lower bounds on the simple and conditioned
scores.

Proposition 4.2. Let
(
Ω, (Xi)i∈I

)
be a random variable model and L an associated

latent variable model with latent variables (YA)A∈P+I . Then, for any A ⊆ I, we
have

(4.6) σL (A) ≥ χL (A) ≥ H (Y∩A) ≥ H (XA) .

Proof. It is immediate that σL (A) ≥ χL (A). To see that χL (A) ≥ H (Y∩A), we
proceed as follows. The set

(4.7)
{
B | B ∈ P+I,B ∩A ̸= ∅

}
is partially ordered by the inclusion relation B1 ⊇ B2. This extends to a total
order, i.e. there exists a total order ⪯ on this set such that whenever B1 ⊇ B2, we
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have B1 ⪯ B2. Thus, using the nonnegativity of mutual information, we have

(4.8) H
(
YB | (YC)C⊋B

)
≥ H

(
YB | (YC)C≺B

)
.

Now we can establish the next inequality by a calculation:

χL (A) =
∑

B∩A̸=∅

H
(
YB | (YC)C⊋B

)
(4.9)

≥
∑

B∩A̸=∅

H
(
YB | (YC)C≺B

)
= H (Y∩A) .

Finally, the random variable XA is a function of Y∩A almost everywhere by de�ni-
tion, so H (Y∩A) ≥ H (XA) . □

This motivates a de�nition of perfect condensation.

De�nition 4.3. A latent variable model L perfectly condenses a random variable
model M =

(
Ω, (Xi)i∈I

)
if χL (A) = H (XA) for all A ⊆ I. Further, L simply-

perfectly condenses M if σL (A) = H (XA) for all A ⊆ I.

Example 4.4. Let I be an index set, and consider any random variable model
L =

(
Ω, (YA)A∈P+I

)
, indexed by the nonempty power set of I, such that the

variables YA are jointly independent. We will construct a random variable model
M =

(
Ω, (Xi)i∈I

)
such that M is perfectly condensed by L, as related to M via

the identity map idΩ. For each i ∈ I, we de�ne Xi to be the product random
variable

(4.10) Xi = Y∋i = (YA : i ∈ A ⊆ I) .

Now, for any set A ⊆ I, we have

H (XA) = H (Xi : i ∈ A) = H (YB : B ∩A ̸= ∅)(4.11)

=
∑

B∩A̸=∅

H (YB) ,

using the independence assumption in the last step. This is just the simple score,
so L simply-perfectly condenses M.

We can say quite a lot about a latent variable model if we know that it is a
perfect condensation or a simple-perfect condensation.

Lemma 4.5. Let M be a random variable model with random variables (Xi)i∈I ,

let L be an associated latent variable model with latent variables (YA)A∈P+I . Then,

the following are equivalent.

(1) For all A ∈ P+I, we have H (Y∩A) = H (XA).
(2) For all i ∈ I and A ∈ PI such that i ∈ A, there is some measurable function

f i
A : RXi → RYA such that YA = f i

A (Xi) almost everywhere.

Proof. (=⇒) For each i ∈ A, we have

(4.12) H (Xi) = H (Y∋i) ,

so since Xi is a function of Y∋i almost everywhere,

(4.13) H (Y∋i | Xi) = H (Y∋i)−H (Xi) = 0.
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Hence, using Corollary 2.5 Y∋i, and a fortiori YA for any A containing i, is almost
everywhere equal to a function of Xi.

(⇐=) For any A ∈ P+I, we have H (Y∩A) ≥ H (XA) by Proposition 4.2. Fur-
ther, picking any i ∈ A, the random variable Y∩A is almost everywhere equal to a
measurable function of Xi, and therefore to a measurable function of XA, so

(4.14) H (Y∩A | XA) = 0

(4.15) H (Y∩A) ≤ H (Y∩A, XA) = H (XA) .

□

Corollary 4.6. Let M be a random variable model with random variables (Xi)i∈I ,

let L be an associated latent variable model with latent variables (YA)A∈P+I that

perfectly condenses M. Then, whenever we have i ∈ A ∈ PI, there is some mea-

surable function f i
A : RXi → RYA such that YA = f i

A (Xi) almost everywhere.

Proof. Using Proposition 4.2, this follows immediately. □

We can also express the conclusion of this corollary in terms of an equivalence.

Proposition 4.7. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model and L =((

Λ, (YA)A∈P+I

)
, π
)
an associated latent variable model. Then, the following are

equivalent.

(1) For all i ∈ I and A ∈ P+I such that i ∈ A, there is some measurable
function f i

A : RXi → RYA such that YA = f i
A (Xi) almost everywhere.

(2)
(
Λ, (Xi)i∈I

)
and

(
Λ,
(
Y∩{i}

)
i∈I

)
are equivalent as random variable models,

via an equivalence of the form
(
idΛ, idI , (gi)i∈I

)
and

(
idΛ, idI , (hi)i∈I

)
for

some families of functions g and h.

Proof. (=⇒) By hypothesis, for each i ∈ I and each A ⊆ I satisfying i ∈ A, we
have YA = f i

A (Xi) almost everywhere. De�ne gi : RXi → RY∋i to be the product

(4.16) gi (x) =
(
f i
A (x) : A ⊆ I, i ∈ A

)
;

we can see that
(
idΛ, idI , (gi)i∈I

)
is a morphism. Also, by the de�nition of latent

variable model, we have functions hi : RY∋i → RXi such that

(4.17) Xi = hi (Y∋i)

almost everywhere, so
(
idΛ, idI , (hi)i∈I

)
is also a morphism. Now, it is immediate

that we have an equivalence.

(⇐=) Take any i and A satisfying i ∈ A ⊆ I. Since
(
idΛ, idI , (gj)j∈I

)
is a

morphism, we have

(4.18) Y∋i = gi (Xi)

almost everywhere. Let piA be the coordinate projection

(4.19) RY∋i =
∏
B∋i

RYB → RYA.

Then,

(4.20) YA = piA (Y∋i) = piA (gi (Xi)) ,

so piA ◦ gi has the desired property. □
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Corollary 4.6 tells us something about perfect, and hence simply-perfect, condensa-
tions. By imposing further conditions, we can de�ne stronger properties, which will
give us equivalences. First, we give a de�nition about probabilistic independence,
which can be seen as a form of the Markov condition from the theory of structural
causal models [SGS01].

De�nition 4.8. Let I be a �nite set, and suppose that (YA)A∈P+I are random
variables on some probability space. The family Y satis�es the ordered Markov

condition if the following statement holds.

• For any A ∈ P+I, let F ⊆ P+I be the collection of all B ∈ P+I such that
B is incomparable in the inclusion order to A, i.e. B is neither a subset nor
a superset of A. Then, the random variables YA and YF are independent
conditional on Y⊋A.

Theorem 4.9. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model and L =((

Λ, (YA)A∈P+I

)
, π
)
an associated latent variable model. The following are equiv-

alent.

(A1) L is a simple-perfect condensation of M.

(A2) For all i ∈ I and A ∈ P+I such that i ∈ A, the latent variable YA is a

function of Xi almost everywhere. Further, the latent variables (YA)A∈P+I

are jointly independent.

(A3) L is a perfect condensation of M and the latent variables (YA)A∈P+I are

jointly independent.

Further, the following are also equivalent:

(B1) L is a perfect condensation of M.

(B2) For all i ∈ I and A ∈ P+I such that i ∈ A, the latent variable YA is

a function of Xi. Further, the latent variables obey the ordered Markov

condition.

Proof. (A1 =⇒ A3) Since L is a simple-perfect condensation, it follows from Propo-
sition 4.2 that for each A ⊆ I,

(4.21)
∑

B∩A ̸=∅

H (YB) = σL (A) ≥ χL (A) ≥ H (Y∩A) = σL (A)

so all these quantities are equal. In particular,

(4.22) χL (A) = H (Y∩A) ,

so L is a perfect condensation of M. Further, it follows from

(4.23)
∑

B∈P+I

H (YB) = σL (I) = H (Y∩I)

that the latent variables (YA)A∈P+I are jointly independent. To spell this out a bit

more, consider any two disjoint families F ,G ⊆ P+I, and let

(4.24) H = P+I −F − G.
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Then, we can calculate

H (Y∩I) ≤ H (YF∪G) +H (YH)(4.25)

≤ H (YF ) +H (YG) +H (YH)

≤
∑

B∈P+I

H (YB) = H (Y∩I) ,

so all these are equal, and so

(4.26) I (YF ;YG) = H (YF ) +H (YG)−H (YF∪G) = 0.

(A3 =⇒ A2) This is immediate from Corollary 4.6.
(A2=⇒ A1) Each latent variable YA for A ∈ P+I is almost everywhere a function

of Xi for any i ∈ A, and therefore is almost everywhere a function of XB for any
B ⊆ I with B ∩ A ̸= ∅. Taking the product random variable over all such A for a
�xed B, we see that Y∩B is a function of XB almost everywhere, and so

(4.27) H (Y∩B) ≤ H (XB) .

Now, using also the independence hypothesis,

(4.28) σL (B) ≥ H (XB) ≥ H (Y∩B) = σL (B) ,

so L is a simple-perfect condensation of M.
(B1 =⇒ B2) The �rst part of this is simply the statement of Lemma 4.5. Next,

as in the proof of Proposition 4.2, we will choose a linear order ⪯ on P+I such
that whenever B ⊇ C, we have B ⪯ C. In this case, we want to choose ⪯ so that
every element of F precedes A. We can do this starting with the partial order ⪯p

de�ned so that B ⪯p C if and only if either (1) B ⊇ C or (2) B is incomparable to
A in the inclusion order and A ⊇ C. It is straightforward to see that ⪯p is indeed
a partial order, and any extension of ⪯p to a linear order gives an order ⪯ with the
desired property.

Using the perfect condensation hypothesis, we have

H (YP+I) =
∑

B∈P+I

H (YB | YC : C ≺ B)(4.29)

≤
∑

B∈P+I

H (YB | Y⊋B)

= χL (I) = H (YP+I) ,

and in particular corresponding elements of the sums here are equal. Looking at
the terms in the sums corresponding to B = A, we have

(4.30) H (YA | YC : C ≺ A) = H (YA | Y⊋A) ,

and since

(4.31) {C | C ≺ A} ⊇ F ∪ {D | D ⊋ A} ,

it follows that

(4.32) H (YA | YF , Y⊋A) = H (YA | Y⊋A) .

This is equivalent to the desired independence statement.
(B2 =⇒ B1) We want to show that χL (A) = H (XA) for all A ∈ P+I. Take

any such A. First, whenever B ∈ P+I with B ∩ A ̸= ∅, the latent variable YB is a
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function of XA almost everywhere, so the variable Y∩A is a function of XA almost
everywhere, and so we have

(4.33) H (Y∩A) = H (XA) .

Next, let ⪯ be a linear order on the set of those B ∈ P+I which intersect A, such
that B ⪯ C whenever C ⊇ B. Writing our usual sum, we now have

(4.34) H (XA) = H (Y∩A) =
∑

B∩A ̸=∅

H (YB | YC : C ≺ B)

For each B in this sum, the set {C | C ≺ B} contains all sets C ∈ P+I which are
strict supersets of B. Further, all its elements that are not strict supersets of B are
inclusion-incomparable to B. So, by our Markov-condition-style hypothesis,

(4.35) H (YB | YC : C ≺ B) = H (YB | YD : D ⊋ B)

for each such B. Hence,

(4.36) H (XA) =
∑

B∩A̸=∅

H (YB | YD : D ⊋ B) = χL (A)

as desired. □

The ordered Markov condition can be stated in another form, which lets us make
another statement equivalent to (B1) and (B2).

Proposition 4.10. Let I be a �nite set, and suppose that (YA)A∈P+I are random

variables with �nite entropy on some probability space. Then, the following are

equivalent.

(1) For any A ∈ P+I, if F ⊆ P+I is the collection of all B ∈ P+I that are
incomparable to A, then the random variables YA and YF are independent
conditional on Y⊋A.

(2) For any two upward-closed sets F ,G ⊆ P+I, the random variables YF and
YG are independent conditional on YF∩G .

Proof. (1 =⇒ 2) Let F ,G ⊆ P+I be two upward-closed sets. We want to show that

(4.37) H (YG | YF ) = H (YG | YF∩G) .

Let ⪯ be a total order on G − F such that whenever A ⊇ B, we have A ⪯ B. We
can expand

H (YG | YF ) =
∑

A∈G−F
H (YA | YF , (YB : B ∈ G − F , B ≺ A))(4.38)

H (YG | YF∩G) =
∑

A∈G−F
H (YA | YF∩G , (YB : B ∈ G − F , B ≺ A)) ,

so it would su�ce to show that the corresponding terms are equal. Now, for each
A ∈ G − F , let IA ⊆ P+I be the set of all such sets incomparable with A, and
SA ⊆ P+I be the set of strict supersets of A; we know by hypothesis that A is
conditionally independent of YIA

given YSA
= Y⊋A. By construction,

SA ⊆ F ∪ {B ∈ G − F | B ≺ A} ⊆ IA(4.39)

SA ⊆ (F ∩ G) ∪ {B ∈ G − F | B ≺ A} ⊆ IA,
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so

H (YA | YF , (YB : B ≺ A)) = H (YA | Y⊋A)(4.40)

= H (YA | YF∩G , (YB : B ≺ A))

as desired.
(2 =⇒ 1) Let A ∈ P+I, let F ⊆ P+I be the collection of all such sets incom-

parable to A, and let S be the collection of strict supersets of A. Statement (2)
tells us that F ∪S is conditionally independent of S ∪{A} given S, from which the
conclusion follows. □

Theorem 4.9 looks like an analogue of Lemma 4.5, strengthening the condition that
H (Y∩A) = H (XA). This condition is fairly di�erent from perfect condensation in
other ways though. Recall the latent variable model L1 from Example 4.1, in which
Y{i} = Xi and YA is constant for all other A. Here, the conditionH (Y∩A) = H (XA)
is satis�ed for every set A. We were able to construct such a latent variable model
for any given random variable model�we could for example construct a random
variable model M with random variables X and an associated perfect condensation
with many nontrivial latents Y , using Theorem 4.9, and then M would admit a
very di�erent random variable model as in Example 4.1 with latents Z, and both
these latent variable models would satisfy the same condition:

(4.41) H (Y∩A) = H (Z∩A) = H (XA)

for all subsets A of the index set.
By contrast, the condition of perfect condensation is much more rigid. Given

a random variable model M and associated latent variable models L1 and L2, we
want to say that L1 and L2 are essentially the same. It would be straightforward
to express this by asserting the existence of an equivalence between L1 and L2

satisfying certain properties. Unfortunately, the condition of an equivalence L1 ≃
L2 would be too strong. It may be that the underlying measure spaces of our
two latent variable models�call them Λ1 and Λ2�di�er in a way that does not
interact with the random variables of interest. Maybe di�erent points of Λ1 can
always be distinguished by some latent variable, but Λ2 is the product of Λ1 by
the unit interval equipped with Lebesgue measure, for example. In order to regard
such a di�erence as inessential, we should be willing to extend our latent variable
models by arbitrary morphisms. That is, we should be satis�ed with studying latent

variable models L̃1 and L̃2, together with morphisms L̃k → Lk for each k, and an

equivalence between L̃1 and L̃2.

De�nition 4.11. Let Ω, Λ1, and Λ2 be probability spaces, and πk : Λk → Ω
probability preserving maps for k ∈ {1, 2}. An amalgamation of the diagram

(4.42)

Λ1

Λ2 Ω

π1

π2
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is a countable discrete probability space Λ0 together with probability-preserving
maps ρk : Λ0 → Λk such that the diagram

(4.43)

Λ0 Λ1

Λ2 Ω

ρ1

ρ2 π1

π2

of probability-preserving maps commutes.

De�nition 4.12. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model, and let

L1 =
((
Λ1, (YA)A∈P+I

)
, π1

)
and L2 =

((
Λ2, (ZA)A∈P+I

)
, π2

)
be latent variable

models associated with M. An amalgamation of L1 and L2 consists of

(1) a countable discrete probability space Λ0;

(2) two latent variable models L̃1 and L̃2, both of which have underlying prob-
ability space Λ0 and associated random variable model M; and

(3) two morphisms, ρk : L̃k → Lk for k ∈ {1, 2}, which each act as the iden-
tity on the respective index sets of the latent variable models and on the
respective ranges of all the latent variables, that is, they have the forms

ρ1 =
(
ρ1, idP+I , (idRYA

)A∈P+I

)
: L̃1 → L1(4.44)

ρ2 =
(
ρ2, idP+I , (idRZA

)A∈P+I

)
: L̃2 → L2.(4.45)

Lemma 4.13. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model, and let L1 =((

Λ1, (YA)A∈P+I

)
, π1

)
and L2 =

((
Λ2, (ZA)A∈P+I

)
, π2

)
be latent variable models

associated with M. Then, there is a probability space Λ0 with maps ρk : Λ0 → Λk for

k ∈ {1, 2}, which is an amalgamation of the diagram made by π1 and π2. Further,

there is an amalgamation of L1 and L2, consisting of Λ0 together with the objects

(4.46)

L̃1 =
((
Λ0, (ρ

∗
1YA)A∈P+I

)
, π1 ◦ ρ1

)
L̃2 =

((
Λ0, (ρ

∗
2ZA)A∈P+I

)
, π2 ◦ ρ2

)
and

ρ1 =
(
ρ1, idP+I , (idRYA

)A∈P+I

)
(4.47)

ρ2 =
(
ρ2, idP+I , (idRZA

)A∈P+I

)
.(4.48)

Proof. First, we construct Λ0. The plan is to construct a measurable space for
Λ0 as a pullback in the category of measurable spaces, and then to construct a
probability measure using a conditional-independence idea. Consider the set

(4.49) S = {(λ1, λ2) | λ1 ∈ Λ1, λ2 ∈ Λ2, π1 (λ1) = π2 (λ2)} .
This is a subset of the product measurable space Λ1 × Λ2, so we can view it as a
countable discrete measurable space. We de�ne the measurable maps ρk : S → Λk

by

(4.50) ρk (λ1, λ2) = λk,

and we de�ne π0 : S → Ω by

(4.51) π0 = π1 ◦ ρ1 = π2 ◦ ρ2.
Now, let PΩ be the probability measure on Ω, and let P1 and P2 be those on

Λ1 and Λ2, respectively. For any ω ∈ Ω with PΩ ({ω}) > 0, since

(4.52) PΩ ({ω}) = P1 (π1 = ω) = P2 (π2 = ω) ,
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we can de�ne the conditional probabilities ω 7→ P1 (· | π1 = ω) and ω 7→ P2 (· | π1 = ω),
taking values in the spaces of measures G (Λ1) and G (Λ2), for almost all ω ∈ Ω.
Hence, we can de�ne the integral

(4.53) P̃0 (E) =

∫
Ω

[P1 (· | π1 = ω)]× [P2 (· | π2 = ω)] (E) dPΩ

for every set E ⊆ Λ1 × Λ2. The integrand

(4.54) [P1 (· | π1 = ω)]× [P2 (· | π2 = ω)]

denotes a probability measure for almost all ω, so the function P̃0 is nonnegative

and satis�es P̃0 (Λ1 × Λ2) = 1. We also have countable additivity; we can apply
Tonelli's theorem since the summand is nonnegative.

P̃0

( ∞⋃
k=1

Ek

)
=

∫
Ω

∞∑
k=1

[P1 (· | π1 = ω)]× [P2 (· | π2 = ω)] (Ek) dPΩ(4.55)

=

∞∑
k=1

∫
Ω

[P1 (· | π1 = ω)]× [P2 (· | π2 = ω)] (Ek) dPΩ

= P̃0

( ∞⋃
k=1

Ek

)
.

Hence, P̃0 is a probability measure on Λ1 × Λ2. Further,

P̃0 (S) =

∫
Ω

[P1 (· | π1 = ω)×P2 (· | π2 = ω)]
(
S ∩ π−1

0 (ω)
)
dPΩ(4.56)

=

∫
Ω

P1

(
π−1
1 (ω) | π1 = ω

)
P2

(
π−1
2 (ω) | π2 = ω

)
dPΩ

=

∫
Ω

1 dPΩ = 1,

so, letting P0 (E) = P̃0 (E ∩ S), we see that P0 is a probability measure on S. We
can now de�ne Λ0 to be the countable discrete probability space (S,P0).

Next, we con�rm that the maps ρk, interpreted as maps Λ0 → Λk of probability
spaces, are probability-preserving. For any E ⊆ Λ1, and any ω ∈ Ω,

ρ−1
1 (E) ∩ π−1

0 (ω) = {(λ1, λ2) | λ1 ∈ E, π1 (λ1) = π2 (λ2) = ω}
=
(
E ∩ π−1

1 (ω)
)
× π−1

2 (ω) ,

which is a rectangle, so

P0

(
ρ−1
1 (E)

)
=

∫
Ω

[P1 (· | π1 = ω)×P2 (· | π2 = ω)]
(
ρ−1
1 (E) ∩ π−1

0 (ω)
)
d (π1)∗ P1

(4.57)

=

∫
Ω

P1

(
E ∩ π−1

1 (ω) | π1 = ω
)
· 1 d (π1)∗ P1

= P1 (E) ,

and so ρ1 is probability-preserving. The same reasoning tells us that ρ2 is probability-
preserving as well. It is immediate from de�nitions that the diagram (4.43) com-
mutes.
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Having de�ned Λ0 and the maps ρk, we have also de�ned L̃k for k ∈ {1, 2}. It
is immediate that they are indeed latent variable models for M, it is immediate
that ρ1 and ρ2 are morphisms, and the other conditions in the de�nition of an
amalgamation in the sense of latent variable models are also immediate. □

Now we will be able to state a theorem on the relation between di�erent perfect
condensations of the same random variable model. In order to prove that theorem,
though, we �rst introduce a lemma.

Lemma 4.14. Let X, Y1, Y2, and C be random variables on some countable dis-

crete probability space (Ω,P), and suppose that C has discrete range. Suppose

further that Y1 and Y2 are conditionally independent given C, that X is almost

everywhere a function of (C, Y1), and that X is also almost everywhere a function

of (C, Y2). Then, X is almost everywhere a function of C.

Proof. Fix any c ∈ C such that P (C = c) is positive; working on the measurable
subspace

(4.58) Ωc = {ω ∈ Ω | C = c}

equipped with the probability measure Pc = P (· | C = c), we will see that X is
almost everywhere constant.

Let A ⊆ Ωc be the set of points with positive mass. By hypothesis, there are
functions fi : RYi → RX for i ∈ {1, 2} such that

(4.59) X = f1 (Y1) = f2 (Y2)

almost everywhere, and therefore in particular everywhere on A. For any two points
ω0, ω ∈ A, if there is some υ ∈ A with

(4.60) Y1 (υ) = Y1 (ω0) Y2 (υ) = Y2 (ω) ,

then

X (ω) = f2 (Y2 (ω)) = f2 (Y2 (υ))(4.61)

= f1 (Y1 (υ)) = f1 (Y1 (ω0))

= X (ω0) .

We know that Y1 and Y2 are conditionally independent given C, so they are in
particular independent on Ωc. Thus,

Pc (Y1 = Y1 (ω0) ∧ Y2 = Y2 (ω)) = Pc (Y1 = Y1 (ω0)) ·PcY2 = Y2 (ω)

≥ Pc (ω0) ·Pc (ω) > 0,

so we can indeed always pick such a point v. Hence, X is constant on A, and so
almost everywhere on Ωc.

Since this holds for almost every c ∈ RC, we now know that there is a function
g : RC → RX such that X = g (C) almost everywhere. Since RC is discrete, this
function is automatically measurable, as desired. □

Theorem 4.15 (Comparison of perfect condensations). Let M be a random vari-

able model with random variables (Xi)i∈I , and suppose that L1 and L2 are both

perfect condensations of M. Then, we can put the latent variables of L1 and L2

into correspondence in the following sense. Let L̃1 =
((
Λ0, (YA)A∈P+I

)
, π̃1

)
and

L̃2 =
((
Λ0, (ZA)A∈P+I

)
, π̃2

)
be the latent variable models in an amalgamation of
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L1 and L2. Then, the random variable YA is a function of Z⊇A almost everywhere,

and reciprocally ZA is a function of Y⊇A almost everywhere.

Proof. We know that such an amalgamation exists by Lemma 4.13. We want to
deduce that YA is a function of Z⊇A almost everywhere; using the symmetry of the
situation to interchange Y and Z, the result would then follow.

Consider any i ∈ A. By Theorem 4.9, YA is a function of Xi almost everywhere,
and by the de�nition of latent variable model, Xi is a function of Z∋i almost
everywhere, so YA is a function of Z∋i almost everywhere.

From here, we will apply Lemma 4.14 repeatedly, using induction. Consider any
two upward-closed sets F ,G ⊆ P+I. That lemma tells us that if YA is a function
of ZF almost everywhere and is a function of ZG almost everywhere, and if ZF is
conditionally independent of ZG given ZF∩G , then YA is a function of ZF∩G almost
everywhere. The conditional independence condition follows from the hypothesis
that L2 is a perfect condensation, using Proposition 4.10. Since

(4.62)
⋂
i∈A

Fi = {B : B ⊇ A} ,

we can conclude that YA is a function of Z⊇A almost everywhere, as desired. □

5. Comparison of latent variable models

5.1. Suggestive examples. We can generalize the ideas of the comparison the-
orem, Theorem 4.15, beyond the hypothesis of perfect condensation. As we have
seen in results like Theorem 4.9, perfect condensation is a signi�cant constraint on
the structure of a latent variable model. However, we will see in Theorem 5.8 that
an analogue of Theorem 4.15 in a more general setting does exist, if we are willing
to exchange a few of the objects in its statement for appropriate approximations.
To begin to suggest an idea, consider the following examples.

Example 5.1. Let L be a random variable with range [0, 1], and let (Xi)
n
i=1 be

conditionally independent coins with bias L. That is, the Xi are 2-valued random
variables, which are conditionally independent given L, and which, conditional on
L, take the value 1 with probability L and 0 with probability 1−L. This determines
a random variable model with random variables (Xi)

n
i=1. We would like to consider

an associated latent variable model with latent variables

Ỹ{1,...,n} = L(5.1)

Ỹi = Xi (i = 1 to n),

but L does not have a countable range, so we can instead consider

Y{1,...,n} = b (L)

Yi = Xi

for some bucketing function b. That is, we pick a �nite set of disjoint intervals with
union [0, 1], and de�ne b to assign to each number the unique interval containing
it.

Without yet posing a de�nite sense, one might suspect that the latent variable
model constructed here is approximately the only �reasonable� latent variable model
associated with the given random variable model, up to some notion of approxi-
mation. Indeed, we have constructed a number of di�erent latent variable models,
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depending on our choice of bucketing function b, which we can regard as approxi-
mating each other, as long as the intervals are su�ciently small. A precise form of
the ideas that such models are approximately unique will be realized in a general-
ization of Theorem 4.15. We will also mention some more diverse examples before
continuing.

Example 5.2. Suppose that we have some coins with di�erent unknown but in-
dependent biases. We cannot observe �ips of the coins directly. Instead, two coins
are chosen at a time�we know which two�and we are told the number of heads,
which may be zero, one, or two.

Formally, let (Lj)j∈J be a family of independent random variables with range

[0, 1]; let c1, c2 : I → J be (deterministic) functions; for i ∈ I, let Ci
1, C

i
2 be Bernoulli

random variables Ci
k ∼ Bern

(
Lck(i)

)
, conditionally independent given L; and de�ne

Xi = Ci
1 + Ci

2.
We can construct an associated latent variable model with latent variables (YA)A∈P+I

as follows. For each A with |A| > 1, let S ⊆ J be the set of all j ∈ J such that
ck (i) = j for some i in A and k ∈ {1, 2}�informally, this is the set of j ∈ J that
contribute to XA. Then, let

(5.2) YA = (b (Lj) : j ∈ S) ,

for some bucketing function b, and let

(5.3) Y{i} = Xi.

We will see that this is in some sense approximately the only reasonable latent
variable model when the buckets are su�ciently small and the sets of observations
Xi to which each coin Lj contributes are su�ciently large and su�ciently di�erent
as j varies.

Example 5.3. Here we use the language of structural causal models [SGS01;
PJS17]. Given a structural causal model, we can produce a corresponding la-
tent variable model in our sense as follows. Let G be a causal graph with vertices
{Xj}j∈J , and with a subset of those vertices, corresponding to indices I ⊆ J , desig-

nated as observed. We can view the joint distribution as a random variable model

MJ =
(
(Ω,P) , (Xj)j∈J

)
such that G and P satisfy the causal Markov condition,

and we can also consider the random variable model MI =
(
(Ω,P) , (Xi)i∈I

)
on

only the observed variables. The problem of latent causal discovery is concerned
with recovering information about MJ and G from MI , generally under reason-
able further hypotheses, or with similar questions involving more general sorts of
graphical structures. In our language, we can represent MJ by a latent variable
model L with latent variables (YA)A∈P+I as follows. For all j ∈ J and i ∈ I, we
denote by j ◀ i the relation that there is a directed path from Xj to Xi in the
graph G. Then, let

(5.4) YA = (Xj : ∃i ∈ A. j ◀ i) .

It is common in the theory of latent causal discovery to have failures of iden-
ti�ability, wherein the desired information about such a pair (MJ , G) cannot be
recovered from MI . Thus, we cannot expect an analogue of Theorem 4.15 to apply
to a latent variable model like L without further assumptions. But when such a
theorem does apply, we can hope to use that fact to derive an identi�ability result
for structural causal models.
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X Y1

Y2

H(X|C) H(X|Y1, Y2, C)

X Y1

Y2

H(X|Y1, C) H(X|Y2, C)

I(Y1;Y2;X|C)

Figure 5.1. Information diagrams for Lemma 5.4

5.2. Comparison of latent variable models. We now proceed toward an ana-
logue of Theorem 4.15, starting with a quantitative variant of Lemma 4.14.

Lemma 5.4. Let X, Y1, Y2, and C be random variables on some probability space,

each of which has �nite entropy. Then,

(5.5) H (X | C) ≤ H (X | Y1, C) +H (X | Y2, C) + I (Y1;Y2 | C) ,

and further, we can make the exact statement

H (X | C) = H (X | Y1, C) +H (X | Y2, C)−H (X | Y1, Y2, C)(5.6)

+ I (Y1;Y2;X | C) .

Proof. We can verify (5.6) with a straightforward if unenlightening calculation.
This can be clari�ed to a certain extent pictorially, as in Figure 5.1.

H (X | Y1, C) +H (X | Y2, C)−H (X | Y1, Y2, C) + I (Y1;Y2;X | C)(5.7)

= H (X | Y1, C) + I (X;Y1 | Y2, C) + I (X;Y1;Y2 | C)

= H (X | Y1, C) + I (X;Y1 | C)

= H (X | C) .

To deduce the inequality form, we use the nonnegativity of entropy and mutual
information.

H (X | C) = H (X | Y1, C) +H (X | Y2, C)−H (X | Y1, Y2, C)(5.8)

+ I (Y1;Y2;X | C)

≤ H (X | Y1, C) +H (X | Y2, C)

+ I (Y1;Y2 | C)− I (Y1;Y2 | X,C)

≤ H (X | Y1, C) +H (X | Y2, C) + I (Y1;Y2 | C) .

□

De�nition 5.5. The polar of a subset F of some nonempty power set P+I is the
collection

(5.9) F◦ =
{
B ∈ P+I : ∀A ∈ F . A ∩B ̸= ∅

}
.
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In order to state the general comparison theorem, we will need to inductively
take intersections of certain sets. We can organize this induction with the concept
of an intersection tree as follows.

De�nition 5.6. An intersection tree T on an intersection-closed collection of sets
M is a triple (V,E, ℓ) of vertices, edges, and labels, satisfying the following condi-
tions.

(1) (V,E) is a directed binary tree; every vertex either has no parents (and so is
a leaf ) or exactly two parents (and so is internal), and there is one vertex,
the root, to which every vertex has a unique directed path.

(2) ℓ is a function from V to M .
(3) For each internal vertex u, with parents v and w, we have

(5.10) ℓ (u) = ℓ (v) ∩ ℓ (w) .

For each internal vertex v of T , suppose that av and bv are the labels of its parents.
Then, we call the family

(5.11) v 7→ ({av, bv} , ℓ (v)) ,
ranging over internal vertices v of T , the family of intersections of T , and we
correspondingly call each element ({av, bv} , ℓ (v)) an intersection of T . Be warned
that the same intersection may appear more than once in the family of intersections,
assigned to di�erent internal vertices.

Proposition 5.7. Let (V,E) be a directed binary tree, let M be an intersection-

closed collection of sets, and let ℓ̃ be a function from the set of leaves of V to M .

Then, there is a unique extension of ℓ̃ to a function ℓ : V → M such that (V,E, ℓ)
is an intersection tree. That function ℓ assigns to each internal vertex the meet of

all the labels of the leaves which are its ancestors.

Proof. Induction.
□

Now, we are ready for the general comparison theorem. This will involve intro-
ducing various sets of indices, and then using them to state an inequality, (5.13). We
can compare this inequality to Theorem 4.15 to better understand what it is claim-
ing. To analogize an inequality to an exact statement, we can think of it as saying
that if each of the terms on the right-hand side is small, then the left-hand side is
small as well. Starting on the right-hand side, we will have two kinds of terms. The
terms of the form H (Y⊇A | XB) being small is an approximate form of Y∩B being a
function of XB almost everywhere, assuming that A ∩B ̸= ∅, and that would be a
consequence of perfect condensation. So, the analogy is strongest when A ∩B ̸= ∅
for every B ∈ F , that is, when A ∈ G. Next, the term I

(
ZL(v);ZR(v) | ZI(v)

)
being

small is an approximate form of the statement that ZL(v) and ZR(v) are indepen-
dent given ZI(v), which follows from Proposition 4.10. On the left-hand side, we
conclude that H (Y⊇A | ZG) is small�here we have replace Z⊇A with ZG relative
to Theorem 4.15. Again, consider the case A ∈ G. Then, every set containing A
is also in G, so when we say that H (Y⊇A | ZG) is small, we are saying that the
information in Y⊇A is not necessarily in Z⊇A, but it is mostly in the larger ZG . We
can think of G as a penumbra around {C : C ⊇ A}. For example, if F consists of all
n-element subsets of A, then we can see that G consists of all sets that contain at
least all but n− 1 elements of A. We can make G better approximate {C : C ⊇ A}
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by picking a larger F , though this comes at a cost in the form of extra terms on
the right-hand side.

We also have the exact statement (5.14). This is in some sense stronger, but it
has a less clear interpretation, without the analogy to Theorem 4.15. The merit
of (5.13) is that it controls a quantity relating Y and Z using terms that each
depend only on one of the two speci�ed latent variable models. Thus, this theorem
establishes that if each of those two latent variable models has a certain property,
then a certain relation between them follows. In contrast, (5.14) has both Y and
Z in each of its terms, so it merely reasons from some properties relating Y and Z
to other such.

Theorem 5.8 (Comparison of latent variable models). Let (Xi)i∈I be the random

variables of some random variable model, and let (YA)A∈P+I and (ZA)A∈P+I be the

latent variable of two associated latent variable models. Form an amalgamation of

those latent variable models with some underlying probability space Λ0; in the sequel,

when we write random variables X, Y , or Z, we will mean their pullbacks to Λ0

under the appropriate maps. Next, consider any set A ∈ P+I and any collection

F ⊆ P+I; let G = F◦ be the polar

(5.12) G =
{
C ∈ P+I : ∀B ∈ F . B ∩ C ̸= ∅

}
;

let T = (V,E, I) be an intersection tree on the lattice of upward-closed subsets

of P+I such that I restricts to a bijection between the leaves of T and the set

of sets {C ∈ P+I : B ∩ C ̸= ∅} ranging over B ∈ F ; and write the set of leaves

of T as L, its set of internal vertices as N , and its family of intersections as

({L (v) ,R (v)} , I (v))v∈N . Then, we have

(5.13) H (Y⊇A | ZG) ≤

[∑
B∈F

H (Y⊇A | XB)

]
+

[∑
v∈N

I
(
ZL(v);ZR(v) | ZI(v)

)]
.

Further, we can make the exact statement

H (Y⊇A | ZG) =

[∑
v∈L

H
(
Y⊇A | ZI(v)

)]
−

[∑
v∈N

H
(
Y⊇A | ZL(v)∪R(v)

)]
(5.14)

+

[∑
v∈N

I
(
ZL(v);ZR(v);Y⊇A | ZI(v)

)]
.

Proof. We will �rst prove (5.14), which we can do following the inductive idea of
Theorem 4.15, but now repeatedly applying Lemma 5.4. For any vertex v of T ,
let Tv be the subgraph of T which contains those vertices which are ancestors of v.
Then, Tv is itself an intersection tree, which has root v. Write the set of leaves of
Tv as L (v) and its set of internal vertices as N (v).

For each v ∈ T , we will establish an analogue of (5.14) for Tv, which will be

H
(
Y⊇A | ZI(v)

)
=

 ∑
w∈L(v)

H
(
Y⊇A | ZI(w)

)−

 ∑
w∈N(v)

H
(
Y⊇A | ZL(w)∪R(w)

)
(5.15)

+

 ∑
w∈N(v)

I
(
ZL(w);ZR(w);Y⊇A | ZI(w)

) .
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If v is a leaf, then both sides of this equation are equal to H
(
Y⊇A | ZI(v)

)
. If v is

internal, we can use Lemma 5.4�let s and t be the parents of v.

H
(
Y⊇A | ZI(v)

)
= H

(
Y⊇A | ZI(s)

)
+H

(
Y⊇A | ZI(t)

)
−H

(
Y⊇A | ZI(s)∪I(t)

)(5.16)

+ I
(
ZI(s);ZI(t);Y⊇A | ZI(v)

)
=

 ∑
w∈L(v)

H
(
Y⊇A | ZI(w)

)−

 ∑
w∈N(s)∪N(t)

H
(
Y⊇A | ZL(w)∪R(w)

)
+

 ∑
w∈N(s)∪N(t)

I
(
ZL(w);ZR(w);Y⊇A | ZI(w)

)
−H

(
Y⊇A | ZI(s)∪I(t)

)
+ I

(
ZI(s);ZI(t);Y⊇A | ZI(v)

)
=

 ∑
w∈L(v)

H
(
Y⊇A | ZI(w)

)−

 ∑
w∈N(v)

H
(
Y⊇A | ZL(w)∪R(w)

)
+

 ∑
w∈N(v)

I
(
ZL(w);ZR(w);Y⊇A | ZI(w)

) .

Specializing this equation to the root, we establish (5.14).
Equation (5.14) follows by a term-by-term comparison. We have

(5.17)
∑
v∈L

H
(
Y⊇A | ZI(v)

)
=
∑
B∈F

H (Y⊇A | Z∩B) ,

and for all B ∈ F ,

(5.18) H (Y⊇A | Z∩B) ≤ H (Y⊇A | XB)

since XB is a function of Z∩B almost everywhere. For all v ∈ N ,

(5.19) −H (Y⊇A | ZLv∪Rv
) ≤ 0

and

I
(
ZL(v);ZR(v);Y⊇A | ZI(v)

)
(5.20)

= I
(
ZL(v);ZR(v) | ZI(v)

)
− I

(
ZL(v);ZR(v) | Y⊇A, ZI(v)

)
≤ I

(
ZL(v);ZR(v) | ZI(v)

)
.

□

5.3. Variation. To better understand what the comparison theorem is saying, and
to develop its consequences, we will look at a few variants of it.

First, we can consider the following simpli�ed forms of Theorem 5.8.

Corollary 5.9. Let (Xi)i∈I be the random variables of a random variable model, let

(YA)A∈P+I and (ZA)A∈P+I be latent variables of associated latent variable models,

and form an amalgamation of the latent variable models. Take A ∈ P+I and

F ⊆ P+I, and suppose that every set B ∈ F is a subset of A.
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Then, if we let G be the polar of F and we pick an intersection tree with leaves

L labeled by F and intersections ({L (v) ,R (v)} , I (v))v∈N , we have

(5.21) H (Y⊇A | ZG) ≤

[∑
B∈F

ϱY (B)

]
+

[∑
v∈N

I
(
ZL(v);ZR(v) | ZI(v)

)]
.

In particular, if Z satis�es the ordered Markov condition, then we have simply

(5.22) H (Y⊇A | ZG) ≤
∑
B∈F

ϱY (B) .

Proof. The �rst form follows from 5.8 since, whenever B ⊆ A,

(5.23) H (Y⊇A | XB) ≤ H (Y⊇B | XB) = ϱY (B) .

The second form follows from the de�nition of the ordered Markov condition. □

We can also consider an example of how the polar of a family serves to approxi-
mate the upward cone of a set.

Corollary 5.10. Let (Xi)i∈I be the random variables of a random variable model,

let (YA)A∈P+I and (ZA)A∈P+I be latent variables of associated latent variable mod-

els, and form an amalgamation of the latent variable models. Suppose that ϱY (C) ≤
α for all C ∈ P+I with cardinality k. Now, let A be an element of P+I and k ∈ N,

and de�ne F to be the collection of all those C ⊆ A with cardinality k. Then, if we
let G be the polar of F and we pick an intersection tree with leaves L labeled by F
and intersections ({L (v) ,R (v)} , I (v))v∈N , we have

(5.24) G =
{
C ⊆ I : C contains at least all but n− 1 elements of A

}
,

and

(5.25) H (Y⊇A | ZG) ≤
(
|A|
k

)
· α+

[∑
v∈N

I
(
ZL(v);ZR(v) | ZI(v)

)]
.

In general, the structure of a latent variable model may lead us to apply The-
orem 5.8 to whichever pairs (A,F) we �nd appropriate, but the form chosen in
Corollary 5.10 gives us a simple characterization of the structure of the polar.
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