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1. Introduction

We are concerned here with what it is to understand a scienti�c theory�as
opposed, for example, to merely being able to use it to make certain predictions.
The leading idea here will be that in order to understand a theory, we should seek
to organize it in terms of certain concepts. This asks a di�erent kind of question
than statistical methods, living in the �context of justi�cation� ask, but nonetheless
we begin to approach it using the mathematical methods of probability theory. In
particular, we here model concepts as latent variables, though we also believe that
some of the ideas here should generalize to concepts that cannot be thus modeled.

The structuring of scienti�c theories has long been a theme of methodological
and philosophical re�ection. Lewis [4] proposes that we should understand the
world in terms of natural properties. We are more skeptical about the natural; like
Dennett [1], we want our ability to use concepts to be the criterion for their �reality�.
Dennett's approach leads in the direction of algorithmic information theory, as he
discusses. While some simple models of concepts have been made using information
theory (algorithmic or otherwise), we believe that none of these faces up to challenge
of understanding a complicated theory in terms of many concepts. Nevertheless,
we do not believe that information theory is powerless here�we seek to begin the
necessary work. Mathematically, our methods have some resemblance to those of
Wentworth and Lorell [7], who are interested in similar problems.

2. Set-up

In this section, we will introduce the central concepts of latent variable models.
We intend for latent variable models to organize the structure of random variable
models by positing additional latent variables, which cannot necessarily be de�ned
from the given random variables. However, our de�nition of latent variable models
will be rather weak. We ask that the given variables can be recovered from the latent
variable, but we don't ask that this serve any organizing role, we don't ask that we
attain an enlightening perspective on the given variables. So, we supplement this
using various scoring functions. A latent variable model that gets a good score may
more likely help us understand the underlying random variable model.

Now, we can proceed with our objects of study.

De�nition 2.1. A random variable model is a standard Borel probability space
Ω together with a countable family of random variables Xi : Ω → Ri valued in
standard Borel spaces.

We will consider many information-theoretic quantities�entropies, mutual in-
formations, and so on�in relation to random variable models. These quantities will
always be de�ned when the probability space and the family (Xi)i∈I are �nite, but
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not necessarily otherwise. Hence, in some cases some analytic care will be taken,
avoiding the unnecessary exclusion of some in�nitary cases from the domain of the
theory.

We will also de�ne morphisms of random variable models. We'll give a bit of
the idea �rst. A probability-preserving map of probability spaces π : Ω → Λ forgets
distinctions. We can think of Ω as an extension of Λ. In other words, we can say
that Ω has all the measurable sets π−1E corresponding to measurable sets E in
Λ, but it can also have other measurable sets. So, a morphism of random variable
models will be similar, but we also account for the random variables named by our
index set. In particular, we correspondingly let the random variables of the source
model make more distinctions than those of the target model. Now, we'll say all
this more precisely.

De�nition 2.2. A morphism of random variable models has the form

(2.1)
(
π, ι, (fj)j∈J

)
:
(
Ω, (Xi)i∈I

)
→

(
Λ, (Yj)j∈J

)
,

where π : Ω → Λ is a probability-preserving map, ι is a function J → I, and fj
is a measurable function from the range of Xι(j) to the range of Yj . We require,

for all j ∈ J , that Yj = fj
(
Xι(j)

)
almost everywhere on Ω. Note that, under the

hypotheses stated, the condition Yj = fj
(
Xι(j)

)
de�nes a measurable set, since

Xι(j), Yj , and fj are measurable functions, and the diagonal of RYj × RYj is a
measurable set (by the standard Borel property).

Making the pullback explicit, we can write this as π∗Yj = fj
(
Xι(j)

)
. Also, note

that if J is countable, then this is equivalent to the condition that on a set of full
measure in Ω, we have Yj = fj

(
Xι(j)

)
for all j ∈ J .

Our aim here is to understand random variable models by means of auxiliary
random variables, which we'll call latent variables. In particular, in a random
variable model

(
Ω, (Xi)i∈I

)
, we want the random variables Xi to be functions

of certain latent variables. We won't necessarily de�ne these latent variables on
Ω; instead we might need an extension of the probability space. This leads to a
de�nition.

De�nition 2.3. A latent variable model for a random variable model
(
Ω, (Xi)i∈I

)
is an ordered pair consisting of a random variable model

(
Λ, (YA)A∈P+I

)
and a

probability-preserving map π : Λ → Ω subject to certain conditions. The random
variables (YA)A∈P+I are indexed by the nonempty powerset of I, and we require
that at most countably many of them are nontrivial, in the sense that they have
range other than a one-point space. Further, for each random variable Xi, we
require that the pullback π∗Xi be almost everywhere a function of the random
variables YA such that A ⊆ I and A ∋ i. In other words, π∗Xi is almost everywhere
equal to fi (YA : A ⊆ I,A ∋ i) for some measurable function fi from the product of
the ranges of the random variables (YA)A⊆I,A∋i to the range of Xi. We call the

variables (YA)A∈P+I latent variables.
Note that the map π is not necessarily a morphism of random variable models

here, since each random variable Xi may depend nontrivially on multiple latent
variables.

De�nition 2.4. LetM be a random variable model, with random variables (Xi)i∈I ,
and L an associated latent variable model with latent variables (YA)A∈P+I . The
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simple score of L at A ⊆ I is

(2.2) σL (A) =
∑

B∈P+I
B∩A̸=∅

H (YB) ,

where H is the Shannon entropy, and correspondingly, the conditioned score of L
at A is

(2.3) χL (A) =
∑

B∩A̸=∅

H
(
YB | (YC)C⊋B

)
.

In particular, we have de�ned these scores for A = ∅ for convenience, but they
are always zero in this case. These scores are in some sense local, measuring the
complexity of the latent model as it pertains to the product of the random variables
(Xi)i∈A.

De�nition 2.5. Let M be a random variable model with variables (Xi)i∈I and L
an associated latent variable model with variables (YA)A∈P+I . We will write X and

Y with certain subscripts other than elements, respectively, of I and P+I to denote
certain products of the random variables in these families. If A ⊆ I, we write XA to
denote the product random variable (Xi)i∈A. Similarly, for any F ⊆ P+I, we write
YF to denote the product random variable (YA)A∈F . We also de�ne the following
notations:

Y∩A =
(
YB : B ∈ P+I,B ∩A ̸= ∅

)
(2.4)

Y⊇A =
(
YB : B ∈ P+I, A ⊆ B

)
(2.5)

Y⊋A =
(
YB : B ∈ P+I, A ⊊ B

)
(2.6)

Y∋i =
(
YB : B ∈ P+I, i ∈ B

)
.(2.7)

In particular, note that all these random variables are valued in standard Borel
spaces, since note that for any i ∈ I,

(2.8) Y∋i = Y∩{i} = Y⊇{i}.

3. Perfect condensation

In order to understand our scoring functions, we will ask some questions broadly
following two directions of inquiry. First, what is a �good� score? When is a score
good enough that we should be interested in a latent variable model that attains
that score? Second, what can we conclude about the structure of a latent variable
model that gets a good score? In the sequel, we assume that all latent variable
models are such that the simple and conditional scores at every set of indices is
�nite. First, we note that we do indeed have uninteresting latent variable models
with bad scores.

Example 3.1. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model. Consider the

latent variable models L1 and L2 associated with M, de�ned as follows. First, L1

and L2 have the same underlying probability space as M, that is,

(3.1) L1 =
((
Ω, (YA)A∈P+I

)
, idΩ

)
L2 =

((
Ω, (ZA)A∈P+I

)
, idΩ

)
for some families Y and Z of random variables. We will set Y{i} = Xi for i ∈ I.

For A ∈ P+I with |A| ≠ 1, let YA be constant. Next, let ZI = XI , and let ZA be
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constant for A ⊊ I. As previously stated, we have assumed that all the following
quantities are de�ned, so we have

σL1 (A) =
∑

B∩A̸=∅

H (YB) =
∑
i∈A

H (Xi)(3.2)

χL1
(A) =

∑
B∩A̸=∅

H (YB | Y⊋B) =
∑
i∈A

H (Xi)(3.3)

σL2 (A) =
∑

B∩A̸=∅

H (ZB) = H (ZI) = H (XI)(3.4)

χL2
(A) =

∑
B∩A̸=∅

H (ZB | Z⊋B) = H (XI) .(3.5)

Since we didn't use anything about the structure of M to produce these latent
variable models, we expect that they don't tell us much about M, at least in the
typical case. So, these should usually be �bad� scores. If we want to produce even
worse scores, we could add more entropy to the latent variables in a way that is
irrelevant to determining the variables Xi.

Now, we can establish some easy lower bounds on the simple and conditioned
scores.

Proposition 3.2. Let
(
Ω, (Xi)i∈I

)
be a random variable model and L an associated

latent variable model with latent variables (YA)A∈P+I . Then, for any A ⊆ I, we
have

(3.6) σL (A) ≥ χL (A) ≥ H (Y∩A) ≥ H (XA) .

This motivates a de�nition of perfect condensation.

De�nition 3.3. A latent variable model L perfectly condenses a random variable
model M =

(
Ω, (Xi)i∈I

)
if χL (A) = H (XA) for all A ⊆ I. Further, L simply-

perfectly condenses M if σL (A) = H (XA) for all A ⊆ I.

Example 3.4. Let I be an index set, and consider any random variable model
L =

(
Ω, (YA)A∈P+I

)
, indexed by the nonempty power set of I, such that the

variables YA are jointly independent. We will construct a random variable model
M =

(
Ω, (Xi)i∈I

)
such that M is perfectly condensed by L, as related to M via

the identity map idΩ. For each i ∈ I, we de�ne Xi to be the product random
variable

(3.7) Xi = Y∋i = (YA : i ∈ A ⊆ I) .

Now, for any set A ⊆ I, we have

H (XA) = H (Xi : i ∈ A) = H (YB : B ∩A ̸= ∅)(3.8)

=
∑

B∩A̸=∅

H (YB) ,

using the independence assumption in the last step. This is just the simple score,
so L simply-perfectly condenses M.

We can say quite a lot about a latent variable model if we know that it is a
perfect condensation or a simple-perfect condensation.
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Lemma 3.5. Let M be a random variable model with random variables (Xi)i∈I ,

let L be an associated latent variable model with latent variables (YA)A∈P+I . Then,

the following are equivalent.

(1) For all A ∈ P+I, we have H (Y∩A) = H (XA).
(2) For all i ∈ I and A ∈ PI such that i ∈ A, there is some measurable function

f i
A : RXi → RYA such that YA = f i

A (Xi) almost everywhere.

Corollary 3.6. Let M be a random variable model with random variables (Xi)i∈I ,

let L be an associated latent variable model with latent variables (YA)A∈P+I that

perfectly condenses M. Then, whenever we have i ∈ A ∈ PI, there is some mea-

surable function f i
A : RXi → RYA such that YA = f i

A (Xi) almost everywhere.

We can also express the conclusion of this corollary in terms of an equivalence.

Proposition 3.7. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model and L =((

Λ, (YA)A∈P+I

)
, π

)
an associated latent variable model. Then, the following are

equivalent.

(1) For all i ∈ I and A ∈ P+I such that i ∈ A, there is some measurable
function f i

A : RXi → RYA such that YA = f i
A (Xi) almost everywhere.

(2)
(
Λ, (Xi)i∈I

)
and

(
Λ,

(
Y∩{i}

)
i∈I

)
are equivalent as random variable models,

via an equivalence of the form
(
idΛ, idI , (gi)i∈I

)
and

(
idΛ, idI , (hi)i∈I

)
for

some families of functions g and h.

Corollary 3.6 tells us something about perfect, and hence simply-perfect, conden-
sations. By imposing further conditions, we can de�ne stronger properties, which
will give us equivalences.

Theorem 3.8. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model and L =((

Λ, (YA)A∈P+I

)
, π

)
an associated latent variable model. The following are equiv-

alent.

(A1) L is a simple-perfect condensation of M.

(A2) For all i ∈ I and A ∈ P+I such that i ∈ A, the latent variable YA is a

function of Xi. Further, the latent variables (YA)A∈P+I are jointly inde-

pendent.

(A3) L is a perfect condensation of M and the latent variables (YA)A∈P+I are

jointly independent.

Further, the following are also equivalent:

(B1) L is a perfect condensation of M.

(B2) For all i ∈ I and A ∈ P+I such that i ∈ A, the latent variable YA is a

function of Xi. Further, the latent variables obey the following indepen-

dence condition, which is a form of the Markov condition from the theory

of Bayesian networks. For any A ∈ P+I, let F ⊆ P+I be the family of all

B ∈ P+I such that B is incomparable in the inclusion order to A, i.e. B is

neither a subset nor a superset of A. Then, the random variables YA and

YF are independent conditional on Y⊋A.

This theorem looks like an analogue of Lemma 3.5, strengthening the condition
thatH (Y∩A) = H (XA). This condition is fairly di�erent from perfect condensation
in other ways though. Recall the latent variable model L1 from Example 3.1, in
which Y{i} = Xi and YA is constant for all other A. Here, the condition H (Y∩A) =
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H (XA) is satis�ed for every set A. We were able to construct such a latent variable
model for any given random variable model�we could for example construct a
random variable model M with random variables X and an associated perfect
condensation with many nontrivial latents Y , using Theorem 3.8, and then M
would admit a very di�erent random variable model as in Example 3.1 with latents
Z, and both these latent variable models would satisfy the same condition:

(3.9) H (Y∩A) = H (Z∩A) = H (XA)

for all subsets A of the index set.
By contrast, the condition of perfect condensation is much more rigid. Given

a random variable model M and associated latent variable models L1 and L2, we
want to say that L1 and L2 are essentially the same. It would be straightforward
to express this by asserting the existence of an equivalence between L1 and L2

satisfying certain properties. Under some hypotheses, this will hold, but mostly we
will be concerned with something somewhat weaker. One aspect of this is that it
may be that the underlying measure spaces of our two latent variable models�call
them Λ1 and Λ2�di�er in a way that does not interact with the random variables
of interest. Maybe di�erent points of Λ1 can always be distinguished by some latent
variable, but Λ2 is the product of Λ1 by the unit interval equipped with Lebesgue
measure, for example. In order to regard such a di�erence as inessential, we should
be willing to extend our latent variable models by arbitrary morphisms. That is,

we should be satis�ed with studying latent variable models L̃1 and L̃2, together

with morphisms L̃k → Lk for each k, and an equivalence between L̃1 and L̃2.

De�nition 3.9. Let Ω, Λ1, and Λ2 be probability spaces, and πk : Λk → Ω prob-
ability preserving maps for k ∈ {1, 2}. A amalgamation of Λ1 and Λ2 given Ω is a
probability space Λ0 together with probability-preserving maps ρk : Λ0 → Λk such
that the diagram

(3.10)

Λ0 Λ1

Λ2 Ω

ρ1

ρ2 π1

π2

of probability-preserving maps commutes.

Lemma 3.10. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model, and let L1 =((

Λ1, (YA)A∈P+I

)
, π1

)
and L2 =

((
Λ2, (ZA)A∈P+I

)
, π2

)
be latent variable models

associated with M. Then, there is a standard Borel probability space Λ0 with maps

ρk : Λ0 → Λk for k ∈ {1, 2}, which is an amalgamation of Λ1 and Λ2 given Ω.
Further, the structures

(3.11)

L̃1 =
((
Λ0, (ρ

∗
1YA)A∈P+I

)
, π1 ◦ ρ1

)
L̃2 =

((
Λ0, (ρ

∗
2ZA)A∈P+I

)
, π2 ◦ ρ2

)
are latent variable models associated with M, and

ρ1 =
(
ρ1, idP+I , (idRYA

)A∈P+I

)
: L̃1 → L1(3.12)

ρ2 =
(
ρ2, idP+I , (idRZA

)A∈P+I

)
: L̃2 → L2(3.13)

are morphisms of random variable models.
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Theorem 3.11. Let M =
(
Ω, (Xi)i∈I

)
be a random variable model, and suppose

that L1 =
((
Λ1, (YA)A∈P+I

)
, π1

)
and L2 =

((
Λ2, (ZA)A∈P+I

)
, π2

)
are both perfect

condensations of M. Then, we can put the latent variables Y and Z in correspon-

dence in the following sense. There is a standard Borel probability space Λ0 and

maps ρ1 : Λ0 → Λ1 and ρ2 : Λ0 → Λ2 forming an amalgamation of Λ1 and Λ2 given

Ω, latent variable models

(3.14)

L̃1 =

((
Λ0,

(
ỸA

)
A∈P+I

)
, π1 ◦ ρ1

)
L̃2 =

((
Λ0,

(
Z̃A

)
A∈P+I

)
, π2 ◦ ρ2

)
,

and morphisms

(3.15) ρ1 : L̃1 → L1 ρ2 : L̃2 → L2

such that for all A ∈ P+I, the random variable ỸA is a function of Z̃⊇A almost

everywhere, and reciprocally Z̃A is a function of Ỹ⊇A almost everywhere.
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